The DAISy Lab
The DAISy Lab
News
People
Publications
Contact
Publications
Type
Conference paper
Journal article
Preprint
Date
2022
2021
2020
2019
2018
2017
Y. Lu
,
X. Li
,
S.N. Young
,
X. Li
,
E. Linder
,
D. Suchoff
(2022).
Hyperspectral imaging with chemometrics for non-destructive determination of cannabinoids in floral and leaf materials of industrial hemp (Cannabis sativa L.)
.
Computers and Electronics in Agriculture
, 178, 105760,
doi.org/10.1016/j.compag.2022.107387
.
E. Linder
,
S.N. Young
,
X. Li
,
S. Henriquez-Inoa
,
D. Suchoff
(2022).
The Effect of Harvest Date on Temporal Cannabinoid and Biomass Production in the Floral Hemp (Cannabis sativa L.) Cultivars BaOx and Cherry Wine
.
Horticulturae
, 8(10), 959,
doi.org/10.3390/horticulturae8100959
.
E. Linder
,
S.N. Young
,
X. Li
,
S. Henriquez-Inoa
,
D. Suchoff
(2022).
The Effect of Transplant Date and Plant Spacing on Biomass Production for Floral Hemp (Cannabis sativa L.)
.
Agronomy
, 1856.
https://doi.org/10.3390/agronomy12081856
.
D. Chen
,
Y. Lu
,
Z. Li
,
S.N. Young
(2022).
Hyperspectral imaging with chemometrics for non-destructive determination of cannabinoids in floral and leaf materials of industrial hemp (Cannabis sativa L.)
.
Computers and Electronics in Agriculture
, 198, 107091,
doi.org/10.1016/j.compag.2022.107091
.
Y. Lu
,
S.N. Young
,
H. Wang
,
N. Wijewardane
(2022).
Robust plant segmentation of color images based on image contrast optimization
.
Computers and Electronics in Agriculture
, 193, 106711.
doi.org/10.1016/j.compag.2022.106711
.
S. Kendler
,
R. Aharoni
,
S.N. Young
,
H. Sela
,
T. Kis-Papo
,
T. Fahima
,
B. Fishbain
(2022).
Detection of crop diseases using enhanced variability imagery data and convolutional neural networks
.
Computers and Electronics in Agriculture
, 193, 106732.
doi.org/10.1016/j.compag.2022.106732
.
S.M. Saia
,
N.G. Nelson
,
S.N. Young
,
S. Parham
,
M. Vandegrift
(2022).
Ten simple rules for researchers who want to develop web apps
.
PLoS Comput Biol
18(1): e1009663.
doi.org/10.1371/journal.pcbi.1009663
.
S.N. Young
,
R. Lanciloti
,
J. Peschel
(2022).
The Effects of Interface Views on Performing Aerial Telemanipulation Tasks using Small UAVs
.
International Journal of Social Robotics
. 14, 213-228,
doi.org/10.1007/s12369-021-00783-9
.
Y. Lu
,
K. Payn
,
P. Pandey
,
J. Acosta
,
A. Heine
,
T. Walker
,
S.N. Young
(2021).
Hyperspectral imaging with cost-sensitive learning for high-throughput screening of loblolly pine (Pinus taeda L.) seedlings for freeze tolerance
.
Transactions of the ASABE
, 64(6):2045:2059.
doi.org/10.13031/trans.14708
.
P. Pandey
,
K. Payn
,
Y. Lu
,
A. Heine
,
T. Walker
,
J. J. Acosta
,
S.N. Young
(2021).
Hyperspectral Imaging Combined with Machine Learning for the Detection of Fusiform Rust Disease Incidence in Loblolly Pine Seedlings
.
Remote Sensing
, 13(18), 3595.
doi.org/10.3390/rs13183595
.
S. Kronberg
,
F. Provenza
,
S. van Vliet
,
S.N. Young
(2021).
Review: Closing nutrient cycles for animal production – Current and future agroecological and socio-economic issues
.
Animal (in press)
.
doi.org/10.1016/j.animal.2021.100285
.
D. Chen
,
Y. Lu
,
Z. Li
,
S.N. Young
(2021).
Performance Evaluation of Deep Transfer Learning on Multiclass Identification of Common Weed Species in Cotton Production Systems
.
arXiv:2110.04960 (cs.CV)
.
E. Barnes
,
G. Morgan
,
K. Hake
,
J. Devine
,
R. Kurtz
,
G. Ibendahl
,
A. Sharda
,
G. Rains
,
J. Snider
,
J. M. Maja
,
J. A. Thomasson
,
Y. Lu
,
H. Gharakhani
,
J. Griffin
,
E. Kimura
,
R. Hardin
,
T. Raper
,
S.N. Young
,
K. Fue
,
M. Pelletier
,
J. Wanjura
,
and G. Holt
(2021).
Opportunities for Robotic Systems and Automation in Cotton Production
.
AgriEngineering
, 3(2), 339-362.
doi.org/10.3390/agriengineering3020023
.
S.G. Hall
,
M.D. Campbell
,
V.M. Campbell
,
A. Geddie
,
M.O. Frinsko
,
M. Greensword
,
R. Hasan
,
N. Kasera
,
C. Malveaux
,
D. Paul
,
M.T.homas
,
D. Smith
,
R. Smith
,
S.N. Young
(2021).
Smart Systems to Enhance Sustainability and Add Value to Marine Aquaculture
. 2021 ASABE Annual International Virtual Meeting, 2100523.
doi:10.13031/aim.202100523
.
P. Pandey
,
Hemanth Narayan D.
,
S.N. Young
(2021).
Autonomy in detection, actuation, and planning for robotic weeding systems
.
Transactions of the ASABE
, 64(2): 557-563.
doi.org/10.13031/trans.14085
.
Y. Lu
,
T. Walker
,
K. Payn
,
J. Acosta
,
S.N. Young
,
P. Pandey
,
A. Heine
(2021).
Prediction of freeze damage and minimum winter temperature of the seed source of loblolly pine seedlings using hyperspectral imaging
.
Forest Science
67(3), 321–334.
doi:10.1093/forsci/fxab003
.
Y. Lu
,
S.N. Young
(2020).
A survey of public datasets for computer vision tasks in precision agriculture
.
Computers and Electronics in Agriculture
, 178, 105760,
doi.org/10.1016/j.compag.2020.105760
.
R. Aharoni
,
A. Klymiuk
,
B. Sarusi
,
S.N. Young
,
T. Fahima
,
B. Fishbain
,
S. Kendler
(2020).
Spectral light-reflection data dimensionality reduction for timely detection of yellow rust
.
Precision Agriculture
,
doi.org/10.1007/s11119-020-09742-2
.
Y. Lu
,
K.G. Payn
,
P. Pandey
,
J.J. Acosta
,
A.J. Heine
,
T.D. Walker
,
S.N. Young
(2020).
Hyperspectral imaging-enabled high-throughput screening of loblolly pine (Pinus taeda) seedlings for freeze tolerance
. 2020 ASABE Annual International Virtual Meeting, 202001072.
doi:10.13031/aim.202001072
.
P. Pandey
,
K.G. Payn
,
Y. Lu
,
A.J. Heine
,
T.D. Walker
,
S.N. Young
(2020).
High Throughput Phenotyping for Fusiform Rust Disease Resistance in Loblolly Pine Using Hyperspectral Imaging
. 2020 ASABE Annual International Virtual Meeting, 2000872.
doi:10.13031/aim.202000872
.
G. Penny
,
V. Srinivasan
,
R. Apoorva
,
K. Jeremiah
,
J.M. Peschel
,
S.N. Young
,
S. Thompson
(2020).
A process‐based approach to attribution of historical streamflow decline in a data‐scarce and human‐dominated watershed
.
Hydrological Processes
,
doi.org/10.1002/hyp.13707
.
S.N. Young
,
J. Peschel
(2020).
Review of Human-Machine Interfaces for Small Unmanned Systems with Robotic Manipulators
.
IEEE Transactions on Human Machine Systems
.
doi:10.1109/THMS.2020.2969380
.
S.N. Young
,
J. Peschel
,
E. Kayacan
(2019).
Design and Field Evaluation of a Ground Robot for High-Throughput Phenotyping of Energy Sorghum
.
Precision Agriculture
.
doi.org/10.1007/s11119-018-9601-6
.
S.N. Young
(2019).
A Framework for Evaluating Field-Based, High-Throughput Phenotyping Systems: A Meta-Analysis
.
Sensors
, 19, 3582
doi.org/10.3390/s19163582
.
E. Kayacan
,
S.N. Young
,
J. Peschel
,
G. Chowdhary
(2018).
High Precision Control of Tracked Field Robots in the Presence of Unknown Traction Coefficients
.
J. Field Robotics
.
doi.org/10.1002/rob.21794
.
S.N. Young
,
J.M. Peschel
,
G. Penny
,
S. Thompson
,
V. Srinivasan
(2017).
Robot-Assisted Measurement for Hydrologic Understanding in Data Sparse Regions
.
Water
, 9(7)
doi.org/10.3390/w9070494
.
Cite
×